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ABSTRACT 
 

This paper presents a comparative study of the classification accuracy of myoelectric signals using 
multilayer perceptron with back-propagation algorithm and radial-basis functions networks. The 
myoelectric signals considered are used to classify four upper-limb movements which are elbow bending, 
elbow extension, wrist pronation and wrist supination. The network structure for multilayer perceptron is 
a fully connected one, while the structures used in radial-basis functions network are both fully connected 
and partially connected. Two learning strategies are used for training radial-basis networks, namely 
supervised selection of centres and fixed centres selected at random. The results suggest that radial-basis 
function network with fixed centres can generalise better than the others without requiring extra 
computational effort. 
 

Keywords: multilayer perceptron, myoelectric signal, pattern recognition, radial-basis function 
network, upper-limb prosthesis 

 
1. INTRODUCTION 

 

Myoelectric signals are the signals which are generated by muscles when they contract. They have been used in various 
aspects of medical and biomedical engineering, for example, the diagnosis of neuromuscular disease such as 
polymyositis (Kumaravel and Kavitha, 1994). One of the most common uses of myoelectric signals is for controlling 
prosthesis manipulators (Scott and Parker, 1988). Myoelectric control prostheses have received widespread use as 
devices for individuals with amputations or congenitally deficient upper limbs (Scott and Parker, 1988), and many 
systems are now available commercially to control a single device such as a hand, elbow and wrist. Each myoelectric 
signal, generated by the muscle in performing different task, has a unique pattern which contains the information about 
the direction of movement and the speed of action. To be able to control the prosthesis successfully, the 
microprocessor, which is part of the prosthesis, must be able to classify these patterns accurately; this results in a 
pattern recognition problem. The myoelectric signal is essentially a one-dimensional pattern, and the methods and 
algorithms developed for one-dimensional pattern recognition can be applied to this analysis. The information extracted 
from the myoelectric signal, represented in a feature vector, is chosen to minimise the control error. To achieve this, a 
feature set which maximally separates the desired output classes must be chosen. The need for fast response of the 
prosthesis limits the period over which these features can be extracted. 
 

 A number of researchers have discussed the possibility of using neural network in solving myoelectric signal pattern 
recognition problem. Most research had been carried out by using a multilayer perceptron which contains one hidden 
layer in conjunction with back-propagation algorithm, except the work by Costa and Gander (1993) which had been 
carried out by using a multilayer perceptron with two hidden layers. Myoelectric signals can be drawn from various 
locations on subject’s body, an application dependent criterion. For example, the signals from flexor digitorium 
superficialis are used in classification of finger movements (Hiraiwa et al., 1989) or the signals from biceps and triceps 
branchii are used to determine the arm movements (Hudgins et al., 1993; Ito et al., 1991; Kuruganti et al., 1995). The 
control signal can be derived from a single myoelectric channel (Costa and Gander, 1993; Hudgins et al., 1993; Karlik 
et al., 1994; Kelly et al., 1990), or from multichannel such as two channels (Kuruganti et al., 1995; Yeh et al., 1993), 
four channels (Ito et al., 1991) or five channels (Doerschuk et al., 1983). Using a single channel myoelectric signal 
would result in less complexity in neural network structure. However, using multichannel signals makes the positions 
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of electrodes become less critical to the experiment and increase the classification accuracy (Kuruganti et al., 1995). 
Most of the previous research is concerned with the arm movements classification task. Usually, the experiments are 
carried out in two possible ways: by exposing the subject’s arm movements to a weight constraint (Costa and Gander, 
1993) or by allowing the subject to perform the movement naturally (Hudgins et al., 1993; Kuruganti et al., 1995). 
 

 To control n functions in the prosthesis requires n unique patterns of muscle contraction. The control schemes have 
been based almost entirely on the discriminant approach to pattern recognition, in which each pattern is described by a 
set of features. Features set can be obtained by using various methods. For example, the parameters of some stochastic 
models such as an autoregressive (AR) model or autoregressive moving average (ARMA) model can be used as 
features set. A number of research has been done by utilising AR model (Doerschuk et al., 1983; Graupe et al., 1985; 
Karlik et al., 1994; Kelly et al., 1990; Kiryu et al., 1994; Latwesen and Patterson, 1993; Merletti and Lo Conte, 1995; 
Zardoshti-Kermani et al., 1995). All of these works are based upon the research by Graupe and Kline (1975) which 
involves modelling myoelectric signals as ARMA models. The later research has shown that the use of AR model is 
sufficient for modelling myoelectric signals. Graupe et al. (1985) have proved that a myoelectric signal within a period 
of 0.2-0.3 second can be model as a 4th order AR model. 
 

 Various methods have been used to obtained the parameters of AR model. One of the most common methods which 
has been used is recursive least squares (RLS) or sequential least squares (SLS) (Graupe et al., 1985; Kiryu et al., 1994; 
Latwesen and Patterson, 1993; Zardoshti-Kermani et al., 1995). This method has been proved to be very reliable and 
has capability in dealing with noisy myoelectric signal. The extension of recursive least squares algorithm to 
accommodate multivariable autoregressive model is proposed by Doerschuk et al. (1983). This extension is done such 
that all parameters of the AR models from different channels of the signals can be computed simultaneously. Other 
methods which have been used to obtained the parameters of AR model are the application of discrete Hopfield 
network (Kelly et al., 1990) and the PARCOR algorithm (Karlik et al., 1994). Unlike recursive least squares algorithm 
which is based on the principle of minimising the error between the estimate value and the actual value of each signal in 
each iteration, discrete Hopfield network is used under the principle of multivariable optimisation. One advantage in 
using discrete Hopfield network is that the convergence rate of computation by discrete Hopfield network is higher than 
that of the recursive least squares algorithms (Kelly et al., 1990). 
 

 Some other characteristics of myoelectric signal can also be used as features for the neural network input. For 
example, the time domain characteristics of the signal such as mean absolute value, mean absolute value slope, zero 
crossings, slope sign changes and waveform length have been used by Hudgins et al. (1993) and Kuruganti et al. 
(1995). Other time domain characteristics such as the turns and mean amplitude and normalised time average have been 
utilised by Yeh et al. (1993) and Ito et al. (1991), respectively. An advantage which can be gained by using time 
domain characteristics instead of parameters of stochastic models is the complexity reduction in feature extraction 
process. One drawback is the increase in input layer of the network. Parameters from fast Fourier transform (FFT) can 
also be used as the features set (Hiraiwa et al., 1989). Del Boca and Park (1994) have extracted the signal features 
through Fourier analysis. Unlike any other previous research, the features are then unsupervised clustered by using 
fuzzy c-mean algorithm before they are presented to the neural network for pattern recognition. This method has been 
proved to be very efficient for real-time operation. 
 

 The assumption that myoelectric signal is a stochastic signal has always been made when the parameters of AR 
model, time domain characteristics or results from Fourier analysis are used as features. Costa and Gander (1993) have 
proposed a new assumption that myoelectric signal should be treated as a chaotic signal. This assumption leads to a 
totally different type of features that can be used as input to the neural network. They use the Poincaré sections of the 
chaotic myoelectric signal as the features set. They also suggest the use of their result in automated myopathy 
diagnosis. 
 

 This paper is concerned with the use of neural networks in myoelectric control system. The myoelectric data used in 
the experiments are the data obtained from the journal article by Graupe et al. (1985). These data are the autoregressive 
(AR) model parameters of the single-site myoelectric signals obtained by measuring the signals from the location 
between biceps and triceps with sampling period of 2 ms. The location of the electrode is expected to be the place 
where the maximum cross-talk between signals occurs. Four contraction types are concerned in the experiments. These 
contraction types are elbow bending (EB) or elbow flexion, elbow extension (EE), wrist pronation (WP) and wrist 
supination (WS) (Graupe et al., 1985). The AR model parameters are used as feature for the feature sets. These feature 
sets are divided into two groups, one for training the networks, another for testing. The feature sets are used as input to 
two types of neural network. They are a multilayer perceptron with back-propagation algorithm network and a radial-
basis function network. Comparative study on myoelectric signal classification accuracy performance between these 
two types of network is the major objective in this paper. This objective rises from the fact that nearly all research in 
this area had been carried out by using multilayer perceptron which contains one hidden layer in conjunction with back-
propagation algorithm. The experiments which had been done can be divided into two sections. They are determination 
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on multilayer perceptron structure and determination on learning strategies and structure topologies in radial-basis 
function network. 
 

2. DETERMINATION ON MULTILAYER PERCEPTRON STRUCTURE 
 

The cost function of multilayer perceptron is given in Eq. (1), 

ε( ) ( )n ek
k

No

=
=

∑1
2

2

1

n               (1) 

where ε( )n  is the instantaneous cost function at iteration n, 
  e is the error from output node k at iteration n and nk ( )
  No  is the number of output nodes. 
 

The error from each output node can be defined as follows, 

e n d n y nk k k( ) ( ) ( )= −              (2) 

where dk(n) is the desired response of output node k at iteration n and 
  yk(n) is the output of output node k at iteration n. 
 

Haykin (1994) gives summary on back-propagation algorithm as follows. 
 

1. Initialisation. Set all the weights and threshold levels of the network to small random numbers that are uniformly 
distributed. 
 

2. Forward Computation. Let a training example be denoted by [x(n), d(n)], with the input vector x(n) applied to the 
input layer and the desired response vector d(n) presented to the output layer. The net internal activity level vj

(l)(n) for 
neuron j in layer l is given by 

v n w n y nj
l

ji
l

i
l

i

p
( ) ( ) ( )( ) ( ) ( )= −

=
∑ 1

0

            (3) 

where yi
(l-1)(n) is the signal from neuron i in the previous layer l-1 at iteration n and 

  wji
(l)(n) is the weight of neuron j in layer l that is connected to neuron i in layer l-1 at iteration n. 

 

For i = 0, we have 
y l

0
1 1( )− = −                (4) 

and 
w n nj

l
j
l

0
( ) ( )( ) ( )= θ               (5) 

where θj
(l)(n) is the threshold applied to neuron j in layer l. 

 

 With the use of a logistic function for the sigmoidal non-linearity, the output of neuron j in layer l is given by 

y n
v nj

l

j
l

( )
( )( )

exp( ( ))
=

+ −

1
1

.             (6) 

If neuron j is in the first hidden layer (i.e., l = 1), set 

y n x nj j
( ) ( ) ( )0 =                (7) 

where xj(n) is the jth element of input vector x(n). If neuron j is in the output layer (i.e., l = L), set 

y n o nj
L

j
( ) ( ) ( )= .               (8) 

The error can be computed as follows, 
e n d n o nj j j( ) ( ) ( )= −               (9) 

where dj(n) is the jth element of the desired response vector d(n). 
 

4. Backward Computation. Compute the local gradients (δ) of the network by progressing backward, layer by layer. 
For neuron j in output layer L, the local gradient is given by 
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[ ]δ j
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j jn e n o n o n( ) ( )( ) ( ) ( ) ( )= −1 .            (10) 

For neuron j in hidden layer l, the local gradient is given by 

[ ]δ δj
l

j
l l

k
l

kj
l

k

n y n y n n w n( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )= − + +∑1 1 1 .         (11) 

The weight of the network in layer l can be adjusted according to the generalised delta rule as follows, 

[ ]w n w n w n w n n y nji
l

ji
l

ji
l

ji
l

j
l

i
l( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )+ = + − − + −1 1 1α ηδ        (12) 

where η is the learning rate parameter and 
  α is the momentum constant. 
 

In this study, there are three parameters which are needed to be considered. They are learning rate parameter, 
momentum constant and number of hidden nodes. Previous research has shown that only one hidden layer is sufficient 
for this application. The ranges of value for both learning rate parameter and momentum constant are typically lied 
between 0 and 1. These two parameters cannot be chosen independently. Three observations on choices of learning rate 
parameter and momentum constant are given by Haykin (1994) as follows. 
 

• A smaller learning rate parameter leads to slower convergence. The search with smaller learning rate parameter can 
cover more error surface than the search with larger learning rate parameter. 

 

• For learning rate parameter approaching zero, the use of momentum constant with the value near one will increase 
the speed of convergence. On the other hand, for learning rate parameter approaching one, the use of momentum 
constant with the value near zero will ensure the stability of learning. 

 

• The use of large value of learning rate parameter in conjunction with large momentum constant can leads to 
oscillations in the mean-squared error during learning process and a high value of final mean-squared error (Haykin, 
1994). 

 

From these three observations, learning rate parameter are chosen to be 0.1 and momentum constant is chosen to be 0.9. 
It will lead to a good coverage of error surface and fast convergence. The number of hidden nodes is determined via 
experiment. The testing range is chosen to be from 10 to 15. Classification results are shown in Fig. 1. 
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Figure 1. Classification results of multilayer perceptron with back-propagation algorithm. 

 
Experiment results show that the optimum number of hidden nodes is 13 with the highest classification accuracy of 
96.3 %. 
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3. DETERMINATION ON LEARNING STRATEGIES AND STRUCTURE TOPOLOGIES 
IN RADIAL-BASIS FUNCTION NETWORK 

 

Two learning strategies are used in this study. These learning strategies are supervised selection of centres of radial-
basis function and fixed centres of radial-basis function selected at random. 
 
3.1 Supervised Selection of Centres 
 

In this learning strategy, all free parameters in the network undergo a supervised learning process. These free 
parameters are the weights connecting the hidden layer to the output layer, the centres of radial-basis function in the 
hidden layer and the inverse covariance matrices of the radial-basis function. This is the most generalised learning 
strategy for radial-basis function network. The algorithm used in the learning process is derived from the method of 
steepest descent. In this study, all learning rate parameters are set at 0.1. Two topologies of the network are used under 
this learning strategy. These topologies are partially connected network and fully connected network. 
 
3.1.1 Partially Connected Network. In this topology, hidden nodes and output nodes are partially connected. Since there 
are four patterns in concerned, the number of output nodes in this case is four. Each hidden node will be connected to 
only one output node. Output from the first output node will be used to determine whether input pattern belongs to class 
1 or not. Other output nodes work in similar fashion. Combination of result from all output nodes will be used to 
determine the class of input pattern. The topology of the network is shown in Fig. 2. 
 

 
 

Input layer Hidden layer Output layer 

Figure 2. Partially connected radial-basis function network. 
 
This network topology can be viewed as four radial-basis function networks with on output node, sharing the same 
input working in co-operation. In this study, each part of network that fully connected to a single output node is call 
sub-network. In this case, there will be four sub-networks. 
 

 The cost function for each sub-network is defined as follows, 

ε k kn e( ) ( )=
1
2

2 n ,       k = 1, 2, 3, 4    (13) 

where ε k n( )  is the instantaneous cost function of sub-network k at iteration n and 
  e is the error from output node k at iteration n. nk ( )
 

The error from each output node is defined as follows, 

e n d n w n G n nk k ki i
i

M

i

k

( ) ( ) ( ) ( ( ) ( ) )= − −
=
∑ x t C

1

,   k = 1, 2, 3, 4    (14) 

where  is the desired output of output node k at iteration n, d nk ( )
  is the weight of sub-network k which connects to the ith Green’s function in the same sub-network, w nki ( )

Proc. 1st Euro. Conf. Disability, Virtual Reality & Assoc. Tech., Maidenhead, UK, 1996 
1996 ECDVRAT and University of Reading, UK ; ISBN 0 7049 1140 X 

155



  G(.) is the Green’s function and 
  Mk  is the number of Green’s function in sub-network k. 
 

Define Green’s function in radial-basis function network as follows, 

G Gi i i
T

i( ) (( ) (x t x t x tC− = − −−Σ 1
i ))           (15) 

where x is the input pattern, 
  ti is the ith centre of radial-basis function network and 
  Σi

-1is the ith inverse covariance matrix. 
 

 In this study, Green’s function is chosen to be Gaussian function which can be shown in Eq. (16), 

G i i i
T

i( ) exp( ( ) ( ))x t x t x tC− = − − −−Σ 1
i .          (16) 

Steepest descent algorithm is used to determine algorithm for adapting the value of weights, centres and inverse 
covariance matrices. This leads to the use of partial derivatives of the cost function with respect to these free 
parameters. The adapting formula would be in the form shown in Eq. (17), 

p n p n n
p n

( ) ( ) ( )
( )

+ = −1 η
∂ε
∂

             (17) 

where p(n) is free parameter at iteration n and 
  η  is learning rate parameter. 
 

 These partial derivatives are shown in Eqs (18-20), 
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where G′(.) is the first derivative of the Green’s function G(.) with respect to its argument and 

[ ][ ]Q x t x ti n n i n n i n
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Figure 3. Classification results of partially connected radial-basis function network with supervised selection of 
centres (centres in each sub-network are selected from all input classes). 
 
Two sets of experiments are conducted under this structure type of network. In the first set of experiment, the centres in 
each sub-network are chosen from all four pattern classes with equal number of centres from each pattern. The number 
of hidden nodes in each sub-network is chosen to be 8, 12, 16 and 20. In other words, the total number of hidden nodes 
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in the entire network in each case would be 32, 48, 64 and 80, respectively. The classification results are shown in Fig. 
3. 
 
Experiment results show that the optimum number of hidden nodes in this case is 32 with the highest classification 
accuracy of 74.4 %. 
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Figure 4. Classification results of partially connected radial-basis function network with supervised selection of  

                    centres. (centres in each sub-network are selected from one input class only). 
 
In the second set of experiment, the centres in each sub-network are chosen from only one pattern class. The number of 
hidden nodes in each sub-network is chosen to be in the range of 4 to 8. This is corresponding to the total hidden nodes 
of 16, 20, 24, 28, and 32. The classification result is shown in Fig. 4. Experiment results show that the optimum number 
of hidden nodes in this case is 24 with the highest classification accuracy of 77.2 %. 
 
3.1.2 Fully Connected Network. In this topology, hidden layer is fully connected to output layer. The cost function in 
this case is given in Eq. (22), 

ε( ) ( )n ek
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where ε( )n  is the instantaneous cost function at iteration n, 
  e is the error from output node k at iteration n and nk ( )
  No  is the number of output nodes. 
 

The error from each output node is defined as follows, 
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,   k = 1, 2, 3, 4    (23) 

where M is the number of Green’s function in the network. 
 

 Steepest descent algorithm is used to adapt free parameters in the network. Partial derivatives of free parameters are 
given in Eqs (24-26), 
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For this structure type of network, all learning rate parameters are set to 0.1 as well. The number of hidden nodes is 
chosen to be 8, 12, 16 and 20. The centres are selected from all pattern classes with equal number of centres from each 
pattern. The classification results are shown in Fig. 5. 
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Figure 5. Classification results of fully connected radial-basis function network with supervised selection of centres. 

 
From experiment results, the optimum number of hidden nodes is 16 with the highest classification accuracy of 75.8 %. 
 
3.2 Fixed Centres Selected at Random 
 

In this learning strategy, the centres of radial-basis function are fixed. These centres are selected at random from all 
pattern classes with equal number of centres from each pattern. In this case, the network is fully connected. The 
Green’s function is defined as shown in Eq. (27), 

G M
di( ) exp(x t x t− = − −2

2
2

i )             (27) 

where M is the number of centres and 
  d is the maximum distance between the chosen centres. 
 

The only parameter that undergoes supervised learning is the weight in the network. Haykin (1994) suggests that one 
straightforward procedure for finding the weight of the network is to use pseudoinverse method. The weight solution is 
given by Eq. (28), 

w G d= +                 (28) 

where d is the desired response vector in the training set and 
  G+ is the pseudoinverse matrix of matrix G. 
 

The matrix G is defined in Eqs (29-30), 
{ }G + = gni                (29) 

g M
d

nni i= − −exp( ( ) )2
2x t ,  n = 1, 2, 3,..., N; i= 1, 2, 3,..., M  (30) 

where N is the total number of training input pattern. 
 

 One way of solving Eq. (28) is to use recursive least square (RLS) algorithm. In this experiment, the number of 
hidden nodes is chosen to be 8, 12, 16, and 20. The classification results are shown in Fig. 6. 

 All experiment results in this case are over 99 % classification accuracy. The optimum number of hidden nodes is 8 
with classification accuracy of 99.0 %. 
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Figure 6. Classification results of radial-basis function network with fixed centres selected at random. 

 
4. CONCLUSIONS 

 

Radial-basis function network with fixed centre selected at random has the highest classification accuracy. This is true 
even with the number of hidden nodes as small as 8. One possible reason that radial-basis function network with 
supervised selection of centres cannot generalise as well as the one with fixed centres is that the centres of network are 
clustered together during training process. These centres cannot distribute themselves to cover the necessary pattern 
space for correct classification. This is a normal effect which is caused by steepest descent algorithm. Multilayer 
perceptron still be able to generalise with very high classification accuracy. Compare with radial-basis function network 
with supervised selection of centres, multilayer perceptron still be a better choice in this application. Since radial-basis 
function network with fixed centres does not require a bigger network structure or computational effort to outmatch 
multilayer perceptron, it should be considered for the possibility of microprocessor implementation in prosthesis 
devices. 
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