
Proc. 5th Intl Conf. Disability, Virtual Reality & Assoc. Tech., Oxford, UK, 2004
2004 ICDVRAT/University of Reading, UK; ISBN 07 049 11 44 2

125

New accessibility model for Microsoft windows

R Haverty

Accessible Technology Group, Microsoft Corporation
1 Microsoft Way, Redmond, Washington 98052, USA

www.microsoft.com/enable

ABSTRACT
Microsoft® Windows® User Interface (UI) Automation is the new accessibility framework for
Microsoft Windows and is intended to address the needs of assistive technology products and
automated testing frameworks by providing programmatic access to information about the user
interface. UI Automation will be fully supported in the Windows platform on “Longhorn” and
will be the means of enabling automated testing and accessibility for all new forms of
Windows user interface, including existing legacy controls.

1. INTRODUCTION
In 2003, Microsoft Corporation commissioned Forrester Research, Inc., to conduct a study to measure the
potential market of people in the United States who are most likely to benefit from the use of accessible
technology for computers http://www.microsoft.com/enable/research/. Accessible technology enables
individuals to adjust their computers to meet their visual, hearing, dexterity, cognitive, and speech needs. It
includes both accessibility options built into products as well as specialty hardware and software products
(assistive technology products) that help individuals interact with a computer. Overall results show that 57%
(74.2 million)i of computer users in the United States are likely or very likely to benefit from the use of
accessible technology due to experiencing mild to severe difficulties or impairments
http://www.microsoft.com/enable/research/computerusers.aspx.

With the current technology, assistive technology vendors (ATV) are required to use many different
approaches to obtain and present information about the UI to the end user, thus spending an inordinate
amount of time and resources on providing this basic information. With such a large percentage of users
needing accessible information it is becoming increasingly important to make it easier for an ATV to
programmatically obtain information about the UI.

The new accessibility model for Windows, UI Automation, is designed to provide a single reliable source
of UI information to assistive technology products and automated test scripts. It provides programmatic
access that allows automated tests to interact with the UI and allows assistive technology products to provide
information about the user interface to their end users. UI Automation also provides means for manipulating
the UI.

UI Automation has two main audiences: UI Automation providers and UI Automation clients. UI
Automation providers are applications such as Microsoft Word, Excel, or third-party applications based on
the Windows operating system. UI Automation clients are assistive technology applications, such as screen
readers, screen enlargers, alternative input, or others. Automated test scripts can use UI Automation for
automated testing and are also considered clients in the UI Automation framework.

This document includes information on the namespaces that the UI Automation framework uses, as well
as information on the following UI Automation features: automation tree, UI Automation control patterns, UI
Automation properties, UI Automation events, and UI Automation Input. Also included is information on
security. This documentation for UI Automation is preliminary and is subject to change.

2. UI AUTOMATION NAMESPACES
The following table lists the namespaces used in the UI Automation framework, as well as the audience that
uses each namespace.

Proc. 5th Intl Conf. Disability, Virtual Reality & Assoc. Tech., Oxford, UK, 2004
2004 ICDVRAT/University of Reading, UK; ISBN 07 049 11 44 2

126

Table 1. UI Automation Namespaces and related audiences.

Namespace Audience used by

System.Windows.Automation UI Automation clients (both assistive technology and
automated test scripts) for finding automation elements,
registering for events and working with control patterns.

System.Windows.Automation.Provider UI Automation providers for implementing UI
Automation on “Avalon” controls or applications.

System.Windows.Automation.InteropProvider UI Automation providers for implementing UI
Automation on non-”Avalon” frameworks such as

Microsoft Win32®.
System.Windows.Automation.ComInteropProvider UI Automation providers for implementing UI

Automation on COM-based controls or applications.
System.Windows.Automation.Searcher UI Automation clients for navigating the automation

tree.

3. UI AUTOMATION TREE
Standard Windows programming has always exposed the relationship between elements in the user interface
in a parent/child relational structure. UI Automation clients (assistive technologies and automated testing
tools) view the UI elements on the desktop as a set of automation elements which are arranged in a tree
structure. Automation elements implement a common class (AutomationElement) to enable consistent
information, interaction, and a navigation model. UI Automation unifies disparate UI Frameworks such as
Avalon, Trident, and Win32 so that code can be written against one API rather than several.

Within the automation tree there is a root automation element which represents the current desktop and
whose children represent application windows on the desktop. Each of these childe elements can contain
automation elements representing the UI elements comprising their UI, such as menus, buttons, toolbars, and
list boxes. Each piece of UI can contain automation elements representing their content, such as menu items,
or list items. Even a button, which does not contain any items, may have child automation elements which
represent the basic UI components that comprise the button, such as text and rectangles.

It is important to note that the automation tree is not a fixed structure. For performance reasons it is built
on demand starting with an automation element which the UI Automation client specifies.

1.1. Views of the Automation Tree

The automation tree can be filtered to create customized views of the tree which contains only those
automation elements that are relevant for a particular client. This approach allows clients to customize the
structure presented through UI Automation to their particular needs. A few default views are provided by the
UI Automation framework, but clients can also define custom views if they need additional control.

1.2. Raw View

The raw view of the automation tree is the full tree of elements for which the desktop is the root. The raw
view closely follows the native programmatic structure of an application and therefore is the most detailed
view that is available. It is also the base on which the other views of the tree are built. Because this view
depends on the underlying UI framework, the raw view of an Avalon button will have a different raw view
than a Win32 button.

1.3. Control View

The Control View of the automation tree simplifies the assistive technology product’s task of describing the
UI to the end user and helping that end user interact with the application because it closely maps to the UI
structure perceived by an end user.

The control view includes all elements from the raw view that an end user would understand as
interactive or contributing to the logical structure of the control in the UI. Examples of elements that
contribute to the logical structure of the UI but are not interactive themselves are item containers such as list
view headers, toolbars, menus, and the status bar. Non-interactive elements used simply for layout or
decorative purposes will not be seen in the control view. An example is a panel that was used only to layout

Proc. 5th Intl Conf. Disability, Virtual Reality & Assoc. Tech., Oxford, UK, 2004
2004 ICDVRAT/University of Reading, UK; ISBN 07 049 11 44 2

127

the controls in a dialog but does not itself contain any information. Non-interactive elements that will be seen
in the control view are graphics with information and static text in a dialog.

1.4. Content View

The content view of the automation tree contains elements that convey the true information in a user
interface. For example, the values in a drop-down ComboBox will appear in the content view because they
represent the information being used by an end user. In the content view, a ComboBox and ListBox are both
represented as a collection of items where one, or perhaps more than one, item can be selected. The fact that
one is always open and one can expand and collapse is irrelevant in the content view because it is designed to
show the data, or content, that is being presented to the user.

1.5. Custom Views

The UI Automation framework also allows a UI Automation client to create a custom view of the automation
tree by specifying the desired match conditions and scoping information. This also allows UI Automation
clients to build their own interaction models for the application using just the data that they need.

1.6. Automation Tree Structure Example

The following example compares the control view and content view of the automation tree for the same
application: Wordpad.

Table 2. Comparison of two Automation Tree structures

Automation Tree (Control View)
The Control view of WordPad shown from the

Desktop has the following automation tree structure:
• Desktop

o Window “Notepad”
 TitleBar “Notepad”
• SystemBar

o MenuItem
• Button AutomationId =

“Minimize”
• Button AutomationId =

“Maximize”
• Button AutomationId = “Close”

 MenuBar ““
• MenuItem “File”
• MenuItem “Edit”

 ToolBar ““
• Button “New”
• Button “Open”

 Text ““
 StatusBar
• Edit
• Edit

Automation Tree (Content View)
The Content view of WordPad shown from the

Desktop has the following automation tree structure:
• Desktop

o Window “Notepad”
 MenuBar ““
• MenuItem “File”
• MenuItem “Edit”

 ToolBar ““
• Button “New”
• Button “Open”

 Text ““
 StatusBar
• Edit
• Edit

4. UI AUTOMATION CONTROL PATTERNS
UI Automation uses control patterns to express the functionality contained in each control. UI Automation
differentiates between what a user would call the control and what can be programmatically done with the
control by using control patterns to express only functionality, separate from the type or name of that control.

UI Automation providers implement control pattern interfaces on UI elements. For Avalon controls,
control pattern interfaces are found in the System.Windows.Automation.Provider namespace and have names
that include the suffix “Provider” (for example, IScrollProvider and IInvokeProvider). For non-Avalon
controls, control pattern interfaces are found in the System.Windows.Automation.InteropProvider namespace
and have names that include the suffix “InteropProvider” (for example, IScrollInteropProvider and
IInvokeInteropProvider).

Clients access methods and properties of control pattern classes and use them to access information about
a UI element, or to manipulate the UI. These control patterns classes are found in the

Proc. 5th Intl Conf. Disability, Virtual Reality & Assoc. Tech., Oxford, UK, 2004
2004 ICDVRAT/University of Reading, UK; ISBN 07 049 11 44 2

128

Systems.Windows.Automation namespace and have names that include the suffix “Pattern” (for example,
InvokePattern and SelectionPattern).

1.7. Control Pattern Components

Control patterns define the structure, methods, properties, and events supported by a control:

• The structure includes the parent, child, and sibling relationships of elements for that control pattern.
• The methods provide the ability to programmatically manipulate the control.
• The properties and events provide rich information and notifications relevant for that control.

Control patterns relate to UI as interfaces relate to COM objects. In COM, you can query an object to ask
what interfaces it supports, and then use those interfaces to access functionality. In UI Automation, clients
can ask a control which patterns it supports and then interact with the control through the properties,
methods, events, and structure of the supported control patterns. For example, providers implement
IScrollProvider for a multi-line edit box. When a client detects that a UI element supports ScrollPattern, it
can use the properties, methods, and events from that class to gather scroll-specific information or
programmatically scroll its content to a new position.

1.8. Standard UI Controls and Their Control Patterns

Controls can support zero or more control patterns. For example:

• The image control does not support any control patterns.
• The button control supports InvokePattern to correspond to the functionality that it can be clicked.

To define the full set of functionality for a control, providers implement multiple control patterns. The
following table shows more examples of standard controls and the control patterns they support.

Table 3. Controls and their Control Patterns.

Control Type Relevant Control Patterns

Button Invoke

CheckBox Toggle

ComboBox ExpandCollapse or Selection

Edit Value, Text

ListBox Selection

ListItem SelectionItem

Tree Selection

TreeItem SelectionItem, ExpandCollapse

1.9 Control Patterns
Table 4 lists some of the key control patterns and their classes and interfaces. Note that interfaces are
designated for “Avalon” providers (for example, IInvokeProvider) and non-”Avalon” providers (for example,
IInvokeInteropProvider).

5. UI AUTOMATION PROPERTIES
UI Automation properties are a set of standard properties that expose information that is important to
assistive technologies. Frequently, this information is exposed differently for each UI framework. Table 5
shows how one standard UI Automation property maps to multiple property names in other UI frameworks.
By implementing UI Automation, providers map unique UI framework properties to standard UI Automation
properties. When this done, it allows UI Automation clients to query for property information using one API
call for a UI Automation property.

Proc. 5th Intl Conf. Disability, Virtual Reality & Assoc. Tech., Oxford, UK, 2004
2004 ICDVRAT/University of Reading, UK; ISBN 07 049 11 44 2

129

Table 4. Control Patterns and their Classes and Interfaces

Control Pattern Client-Side Class Provider-Side Interfaces

ExpandCollapse ExpandCollapsePattern IExpandCollapseProvider; IExpandCollapseInteropProvider

Grid GridPattern IGridProvider; IGridInteropProvider

GridItem GridItemPattern IGridItemProvider; IGridItemInteropProvider

Invoke InvokePattern IInvokeProvider; IInvokeInteropProvider

MultipleView MultipleViewPattern IMultipleViewProvider; IMultipleViewInteropProvider

RangeValue RangeValuePattern IRangeValueProvider; IRangeValueInteropProvider

Scroll ScrollPattern IScrollProvider; IScrollInteropProvider

Selection SelectionPattern ISelectionProvider; ISelectionInteropProvider

SelectionItem SelectionItemPattern ISelectionItemProvider; ISelectionItemInteropProvider

Sort SortPattern ISortProvider; ISortInteropProvider

Table TablePattern ITableProvider; ITableInteropProvider

TableItem TableItemPattern ITableItemProvider; ITableItemInteropProvider

Text TextPattern ITextProvider; ITextInteropProvider

Toggle TogglePattern IToggleProvider; IToggleInteropProvider

Transform TransformPattern ITransformProvider; ITransformInteropProvider

Value ValuePattern IValueProvider; IValueInteropProvider

Window WindowPattern IWindowProvider; IWindowInteropProvider

Zoom ZoomPattern IZoomProvider; IZoomInteropProvider

Table 5. Mapping UI Automation Properties to Other UI Frameworks.

UI Automation Control
Type

UI Framework Framework Property UI Automation Property

Button Avalon Content NameProperty

Button Win32 Caption NameProperty

Image Trident/HTML ALT NameProperty

6. UI AUTOMATION EVENTS
UI Automation offers an event mechanism similar to WinEvents in the current Windows platform. However,
unlike WinEvents, UI Automation’s events are not based on a broadcast mechanism. UI Automation clients
register for specific event notifications and can request that specific UI Automation properties and control
pattern information be passed into their event handler. This provides a much more powerful mechanism than
WinEvents because clients make fewer calls to retrieve the information they require, which results in a fewer
cross-process calls, and therefore better performance. UI Automation provides event notifications for logical
structure changes, control pattern changes, focus changes, property changes, and multimedia events.

Proc. 5th Intl Conf. Disability, Virtual Reality & Assoc. Tech., Oxford, UK, 2004
2004 ICDVRAT/University of Reading, UK; ISBN 07 049 11 44 2

130

7. UI AUTOMATION INPUT
In addition to using control patterns to manipulate the UI, UI Automation provides an Input class as a way to
automate keyboard or mouse input. This class is a simple wrapper around SendInput that may, in a future
release, be replaced by a more powerful input model (designed in conjunction with IME, Tablet, and Cicero
teams).

8. SECURITY AND UI AUTOMATION
The security model for UI Automation is based on only granting access that is needed at the current time.
Programmatically accessing and manipulating the user interface (UI) - functionality available in many UI
Automation programming elements - requires specific security permissions. These UI Automation
programming elements do not work inside a default secure execution environment. This applies to the
following groups of methods:

• Methods that access information about a UI element, such as property values.
• Methods that write or modify the UI by using Control Patterns, such as AddToSelection.
• Methods that provide keyboard or mouse input. These methods are in the Input class.

UI Automation clients need to have the appropriate AutomationPermission when using these
programming elements. The following table summarizes the AutomationPermission that UI Automation
clients can use and provides examples of methods that would require the permission:

Table 5. AutomationPermssion for UI Automation Clients

Action of
Method

AutomationPermissionFlag Example

Access
information
about the UI

Read GetPropertyValue

Write to or
modify the UI

Write Control pattern methods that manipulate the UI, such as
AddToSelection or Invoke.

Send mouse or
keyboard input

Input Methods from the Input class, such as MoveToAndClick
or SendKeyboardInput.

9. CONCLUSIONS
UI Automation is a key part of the new accessibility model for Windows, gathering information about and
interacting with the UI. Adoption of this technology will improve product quality for Windows applications
and reduce the time to market for assistive technology products. Additionally, by implementing UI
Automation, ATVs reduce the resources invested in obtaining UI information allowing them to improve and
expand on the products that they offer.

10. REFERENCES
UI Automation specific section of the Longhorn Software Development Kit (SDK):
http://longhorn.msdn.microsoft.com/?//longhorn.msdn.microsoft.com/lhsdk/accessibility/overviews/uiaccess

_ovw.aspx,
Longhorn SDK Home page: http://longhorn.msdn.microsoft.com/
Longhorn Developer Center home page: http://msdn.microsoft.com/longhorn/
Microsoft research results, “The Wide Range of Abilities and Its Impact On Computer Technology”:
http://www.microsoft.com/enable/research/
Microsoft Accessibility home page: http://www.microsoft.com/enable/

i Study Commissioned by Microsoft Conducted by Forrester Research, Inc. 2004.

